Using Excel, Chapter 8: Hypothesis Testing - One Sample

Excel alone does not conduct complete hypothesis tests[^1]. However, once you calculate the test statistic, Excel can get the critical values and the \(P \)-values needed to complete the test. The functions used to get critical values and \(P \)-values are demonstrated here.

- **Chapter 8.2 - Hypothesis Testing About a Proportion**
 The functions demonstrated here use the standard normal \((z)\) distribution.

- **Chapter 8.3 - Hypothesis Tests About a Mean: \(\sigma \) Not Known \((t\text{-test})\)**
 The functions demonstrated here use the \(t \)-distribution.

- **Chapter 8.4 - Hypothesis Tests About a Mean: \(\sigma \) Known**
 The functions demonstrated here use the standard normal \((z)\) distribution.

[^1]: Excel does actually have two functions, \(\text{T.TEST} \) and \(\text{Z.TEST} \), that return a \(P \)-value for a data set but the alternate hypothesis is awkward (it only conducts right-tailed tests) and you need the raw data.
Chapter 8.2 - Hypothesis Testing About a Proportion

- **Notation**
 - Test Statistic \(z_{\hat{p}} = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \)
 - Significance Level \(\alpha \) (in decimal form)
 - Critical Values \(z_{\alpha} \) or \(\pm z_{\alpha/2} \)

- **Finding Critical Values**
 Here we use the `NORM.S.INV` function.
 `NORM.S.INV` stands for the inverse of the standard normal distribution (\(z \)-distribution).

 Usage: \(\text{NORM.S.INV(area to the left of the critical value)} \)
 This function returns the critical value from the \(z \)-distribution provided you put in the appropriate area.

 - Left-Tailed Tests: \(z_{\alpha} = \text{NORM.S.INV}(\alpha) \)
 - Right-Tailed Tests: \(z_{\alpha} = \text{NORM.S.INV}(1 - \alpha) \)
 - Two-Tailed Tests: \(z_{\alpha/2} = \pm \text{NORM.S.INV}(\alpha/2) \)

- **Finding P-Values**
 Here we use the `NORM.S.DIST` function.
 `NORM.S.DIST` stands for the standard normal distribution (\(z \)-distribution).

 Usage: \(\text{NORM.S.DIST}(z, \text{Cumulative?}) \)
 This function returns the area under the curve to the left of \(z \) when \(\text{Cumulative} = \text{TRUE} \).

 - Left-Tailed Tests: \(P\text{-value} = \text{NORM.S.DIST}(z_{\hat{p}}, \text{TRUE}) \)
 \(z_{\hat{p}} \) should be < 0.
 - Right-Tailed Tests: \(P\text{-value} = 1 - \text{NORM.S.DIST}(z_{\hat{p}}, \text{TRUE}) \)
 \(z_{\hat{p}} \) should be > 0.
 - Two-Tailed Tests: \(P\text{-value} = 2 \times (1 - \text{NORM.S.DIST}(|z_{\hat{p}}|, \text{TRUE})) \)
Chapter 8.3 - Hypothesis Tests About a Mean: \(\sigma \) Not Known (t-test)

- **Notation**
 - Test Statistic = \(t_x = \frac{\bar{x} - \mu}{s/\sqrt{n}} \)
 - Significance Level = \(\alpha \) (in decimal form)
 - Critical Values = \(t_\alpha \) or \(\pm t_{\alpha/2} \)
 - df = degrees of freedom = \(n - 1 \)

- **Finding Critical Values**
 Here we use the T.INV function.
 T.INV stands for the inverse of the t-distribution.

 Usage: T.INV(area left of critical value, degrees of freedom)
 This function returns the critical value from the t-distribution provided you put in the appropriate area and degrees of freedom.

 - Left-Tailed Tests: \(t_\alpha = \text{T.INV}(\alpha, \text{df}) \)
 - Right-Tailed Tests: \(t_\alpha = \text{T.INV}(1 - \alpha, \text{df}) \)
 - Two-Tailed Tests: \(t_{\alpha/2} = \pm \text{T.INV}(\alpha/2, \text{df}) \)

- **Finding P-Values**
 Here we use the T.DIST function.
 T.DIST stands for the t-distribution.

 Usage: T.DIST(t, df, Cumulative?)
 This function returns the area under the curve to the left of \(t \) when Cumulative = TRUE.

 - Left-Tailed Tests: \(P\text{-value} = \text{T.DIST}(t_x, \text{df}, \text{TRUE}) \)
 - Right-Tailed Tests: \(P\text{-value} = 1 - \text{T.DIST}(t_x, \text{df}, \text{TRUE}) \)
 - Two-Tailed Tests: \(P\text{-value} = 2(1 - \text{T.DIST}(|t_x|, \text{df}, \text{TRUE})) \)

*New to Excel 2010 and higher
T.DIST.RT(\(t_x \), df) yields the right-tailed P-value.
T.DIST.2T(\(t_x \), df) yields the two-tailed P-value.
Chapter 8.4 - Hypothesis Tests About a Mean: σ Known

• Notation
 - Test Statistic = \(z_\bar{x} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \)
 - Significance Level = \(\alpha \) (in decimal form)
 - Critical Values = \(z_\alpha \) or \(\pm z_{\alpha/2} \)

• Finding Critical Values
 Here we use the NORM.S.INV function.
 NORM.S.INV stands for the inverse of the standard normal distribution (\(z \)-distribution).

 Usage: \(\text{NORM.S.INV(area to the left of the critical value)} \)
 This function returns the critical value from the \(z \)-distribution provided you put in the appropriate area.

 Left-Tailed Tests: \(z_\alpha = \text{NORM.S.INV}(\alpha) \)
 Right-Tailed Tests: \(z_\alpha = \text{NORM.S.INV}(1 - \alpha) \)
 Two-Tailed Tests: \(z_{\alpha/2} = \pm \text{NORM.S.INV}(\alpha/2) \)

• Finding \(P \)-Values
 Here we use the NORM.S.DIST function.
 NORM.S.DIST stands for the standard normal distribution (\(z \)-distribution).

 Usage: \(\text{NORM.S.DIST}(z, \text{Cumulative?}) \)
 This function returns the area under the curve to the left of \(z \) when Cumulative = TRUE.

 Left-Tailed Tests: \(P\text{-value} = \text{NORM.S.DIST}(\bar{x}, \text{TRUE}) \quad \bar{x} \text{ should be } < 0. \)
 Right-Tailed Tests: \(P\text{-value} = 1 - \text{NORM.S.DIST}(\bar{x}, \text{TRUE}) \quad \bar{x} \text{ should be } > 0. \)
 Two-Tailed Tests: \(P\text{-value} = 2 \left(1 - \text{NORM.S.DIST}(|\bar{x}|, \text{TRUE})\right) \)